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The problem of the time discretization of hyperbolic equations when tinite elements are 
used to represent the spatial dependence is critically examined. A modified equation analysis 
reveals that the classical, second-order accurate, time-stepping algorithms, i.e., the Lax- 
Wendroff, leap-frog, and Crank-Nicolson methods, properly combine with piecewise linear 
finite elements in advection problems only for small values of the time step. On the contrary. 
as the Courant number increases, the numerical phase error does not decrease uniformly at ali 
wavelengths so that the optimal stability limit and the unit CFL property are not achieved. 
These fundamental numerical properties can, however, be recovered, while still remaining in 
the standard Galerkin finite element setting, by increasing the order of accuracy of the time 
discretization. This is accomplished by exploiting the Taylor series expansion in the time 
increment up to the third order before performing the Galerkin spatial discretization using 
piecewise linear interpolations. As a result, it appears that the proper finite element 
equivalents of second-order finite difference schemes are impiicit methods of incremental type 
having third- and fourth-order global accuracy on uniform meshes (Taylor-Galerkin 
methods). Numerical results for several linear examples are presented ?o illustrate the proper- 
ties of the Taylor-Galerkin schemes in one- and two-dimensional calculations. c :9x7 
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0. INTRODUCTION 

Most finite difference codes for computing transient flows and solving dynamical 
problems are based on second-order accurate time-stepping algorithms, namely, the 
Lax-Wendroff, leap-frog, and Crank-Nicolson schemes [l-4]. Due to its dis- 
sipative character, the Lax-Wendroff method has enjoyed wide-spread use in the 
analysis of nonlinear hyperbolic problems, where solutions are often characterized 
by the presence of strong gradients, such as shock waves and contact discon- 
tinuities. On the other hand, the leap-frog and Crank-Nicolson methods, which are 
marginally stable, are extensively used in the computation of smooth solutions to 
pure advection or wave propagation problems, as well as in situations governed by 
mixed advection-diffusion or pure diffusion. 

Owing to their demonstrated effectiveness in finite difference computations, the 
above second-order time-stepping methods were largely used also in connection 
with finite element spatial discretizations of hyperbolic and parabolic problems (see, 
among others, [S-7]). One of the advantages of the conventional Galerkin finite 
element approach in the solution of the linear, one-dimensional, advection equation 

UI+au,=O, a = constant, (0.1) 

is that the discretization based on a uniform mesh of piecewise linear elements 
yields a fourth-order spatial accuracy for transient solutions, while the familiar cen- 
tral difference method is only second-order accurate in the mesh size [4,5]. This 
result is illustrated in Fig. 1, where the phase velocity responses of the spatially dis- 
crete approximations to Eq. (0.1) resulting from central differences and from linear 
finite elements are compared. However, one eventually has to discretize in time, and 
the superior spatial accuracy of linear finite elements over central differences 
actually manifests itself only for small values of the time increment, i.e., only when 
the error due to the discrete time integration is negligible with respect to that 
caused by the spatial discretization. Now, computational efficiency clearly requires 
that time steps as large as possible be used in practical computations, particularly 
when finite elements are employed due to the presence of the consistent mass matrix 

FIG. 1. Phase velocity response of semi-discrete approximations to the advection equation in one 
dimension. Comparison of spatial discretizations based on central finite differences (FD) and linear finite 
elements (FE). 
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in finite element equations for transient problems. Therefore, a basic issue concern- 
ing the use of finite elements in hyperbolic problems is the following: can the 
superior spatial accuracy of linear finite elements be fully exploited in practice, 
without being eroded by the error due to temporal discretization as the time step is 
increased? Answering this question is important also in a finite difference context 
since some high-order difference methods (e.g., the PadC rational approximations to 
spatial derivatives) lead to schemes very closely related to finite element schemes. 

To our knowledge, Morton and Parrott [S] were the first to consider the 
problem of a proper coupling between the time discretization and the Galerkin 
spatial approximation of hyperbolic problems. They pointed out that several dis- 
advantages of the Galerkin approach become apparent as soon as a standard, low- 
order, time discretization is introduced. In particular, a reduced stability range for 
schemes derived from explicit integrators is generally obtained as compared with 
the corresponding finite difference schemes. One of the consequences of this loss of 
stability is that the finite element schemes cannot be used when the Courant num- 
ber approaches unity, while explicit finite difference schemes are exact in this limit. 
At the same time, this reduced stability range, which is directly related to the 
presence of a mass matrix in the Galerkin approach, is also accompanied by a rapid 
fall-off in the phase accuracy as the time step is increased. The approach adopte 
Morton and Parrott to overcome the above difficulties was based on a 

etrov-Galerkin formulation [S]. Special test functions were devis 
on with piecewise linear elements, with the objective of extending 

accuracy of pure Galerkin methods right up to the unit Courant number limit. 
However, the test functions introduced in the Petrov-Galerkin method for Euler, 
leap-frog, and Crank-Nicolson time-stepping do not retain all the valuable conser- 
vation properties associated with the pure Galerkin formulation, and the 
generalization of Petrov-Galerkin schemes to multidimensional and nonlinear 
problems faces some difficulties. An approach more closely based on the charac- 
teristics was subsequently elaborated upon by Morton [9]. This characteristic 
Galerkin method has been illustrated on a number of nonlinear test problems in 
one space dimension and appears very promising. 

Another approach to developing time-accurate methods for the finite element 
solution of hyperbolic problems was suggested by the first author with the 
introduction of the Taylor-Galerkin method [lo]. For the advection equation 
(O.l), the starting point is the substitution of space derivatives for time derivatives 
in a Taylor expansion, as used in the derivation of the Lax-Wendroff meth 
the only modification that the procedure is carried out to the third order. 
basis, higher-order accurate versions of the Euler, 1 p-frog, Crank-Nicolson time- 
stepping algorithms were obtained. When combine with a conventional Galerkin 
spatial discretization, the resulting schemes were own to possess the desired 
properties of extended stability and improved phase accuracy. Moreover, in cow- 
trast with the Petrov-Galerkin methods, schemes of Taylor-Galerkin type 
easily derived for nonlinear and multidimensional equations [ 10, 117, for 
bolic systems [12, 131, and advection-diffusion problems [ 141. 
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The aim of the present paper is to provide a systematic analysis of the performan- 
ces of both the standard, low-order, time-stepping methods and the improved 
Taylor-Galerkin schemes, when employed in the numerical solution of hyperbolic 
problems. The modified equation method of Warming and Hyett [15] is used as a 
basic tool for exposing the deficiencies of the standard time-stepping methods in a 
finite element context and revealing the necessary corrections which lead to the 
improved schemes of Taylor-Galerkin type. 

An outline of the remainder of the paper follows: In Section 1, the modified 
equation method is briefly recalled to indicate how it can be applied to finite 
element equations. Sections 24 are devoted to the analysis of three basic time-step- 
ping algorithms, namely, the single-step Lax-Wendroff method, the three-level leap- 
frog method, and the implicit Crank-Nicolson method, respectively. In each sec- 
tion, we successively analyze the finite difference and finite element schemes 
obtained by using second-order accurate time differencing, and the Taylor-Galerkin 
implicit scheme obtained by combining the improved time differencing algorithm 
with linear finite elements. The dispersion and dissipation properties of the various 
schemes are discussed qualitatively in terms of the truncation errors in the 
corresponding modified equations, and quantitatively in terms of relative phase 
errors and moduli of the amplification factors. Finally, Section 5 extends the 
previous analyses to the case of two-dimensional equations. Several numerical 
examples are presented which corroborate the theoretical analysis. 

1. MODIFIED EQUATION FOR FINITE ELEMENT SCHEMES 

In order to investigate and compare the numerical properties of the various 
schemes approximating the advection equation (O.l), the “modified equation 
method” of Warming and Hyett [15] will be employed. The modified equation is 
the actual partial differential equation which is solved numerically, apart from 
round-off errors, when a given finite difference scheme is applied to solve an initial 
value problem. The procedure to determine the modified equation requires some 
tedious algebra: the difference equation is first expanded in a double Taylor series 
in time and space and subsequently all the time derivatives except for the first-order 
one are then eliminated through the Taylor expanded equation (not the original 
differential equation) suitably differentiated. Fortunately, the entire procedure can 
be programmed on a computer using a symbolic manipulation language such as 
FORMAC [IS] or REDUCE [16]. 

The terms appearing in the modified equation which are not in the original par- 
tial differential equation represent the truncation error of the numerical schemes. 
The main advantage of the approach is that these error terms provide immediate 
information about the dissipation and dispersion properties of the numerical 
scheme. In fact, the even and odd derivative terms are found to be associated, 
respectively, to amplitude and phase errors [15]. Also, a necessary condition for 
stability can be easily obtained simply by inspecting the sign of the coefficient of the 
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lowest order even-derivative term appearing in the modified equation. 
von Neumann method, expressed either in the clasical way Cl-3 
according to the Schur-Cohn theory [17], must be employed to obtain a c 
stability analysis. 

The modified equation method, although originally formulated for finite 
ference schemes, can be applied also to the difference equations which result when 
finite elements are used to represent the spatial dependence. To give an idea of the 
simple modifications required with finite element equations, Iet the explicit Euler 
integration algorithm be applied to the advection equation (@I), namely, 

(U 
9i+1- zP)/dt = -au: + O(dt). (1.1) 

The solution u(x) at each time level is then approximated by means of t 
sion 

where di(x) is the “hat” function centred at the node xI, and (U,} is the vector of 
nodal values. The fully discretized Gale&in equations are obtained by s~bst~tut~~g 
expansion ( 1.2) into Eq. (1.1) and by taking the scalar product ( ) ) of the resulting 
equation with the same functions dj(x) used in the expansion (1.2). In the case of a. 
uniform mesh of size h, one obtains 

[@y; $NJ:‘f’ +u~=,")-~(uy.,+4U~+U~+*)l/dt 

= - a( U;, 1 - U,“- i )/2h. (1.3) 

Note that the use of (linear) finite elements implies that the value of the spatial 
derivative at the jth node affects the temporal variation not only at this no 
also at the two neighboring nodes jrf- 1, so that, in contrast to finite differences, the 
finite element equations are always implicit even when an explicit tirne~ste~~~~~ 
algorithm is employed. When Eq. (1.3) is written in a matrix notation, it assumes 
the form 

where M is the so-called consistent mass matrix an A is the matrix c 
to the first-order (spatial) derivative. To o tain the modifie 
corresponding to the finite element scheme (1.3), the quantities UJ'& 1 
first expanded in a double Taylor series around U; = U, which gives 
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(For notational simplicity, the symbol u is used to denote both the solution of the 
original differential equation and the unknown of the modified equation even 
though the two are distinct functions.) Expression (1.5) differs from the equation 
corresponding to the finite difference scheme by the presence of the mixed derivative 
$z2 d3u/dt a2x on the left-hand side. The occurrence of such a term is due to the 
presence of the nondiagonal mass matrix in finite element schemes and is related to 
the aforementioned intrinsically implicit character of the finite element equations 
for evolution problems. The higher-order time and mixed space-time derivatives in 
Eq. (1.5) are then eliminated according to the standard procedure described in the 
original paper [15]. Table I shows the process of elimination for the scheme (1.3) 
based on the explicit Euler algorithm (EE) in time and linear finite elements (FE) 
in space leading to the modified equation 

u, + au, = - iavhu,, - 4av2h2u,,, + . . . , (1.6) 

where v = a A t/h is the Courant number. The negative coefficient of u,, immediately 
shows that the scheme (1.3) is unconditionally unstable, a result also provided by 
the examination of its amplification factor 

GEE((, v) = (1 - iv sin <)/( 1 - 3 sin’ it), (1.7) 

TABLE I 

Procedure for Determining the Modified Equation of the Finite Element Explicit Euler Scheme 

Coefficients of 

the equation 
1 (i 

Ai 
0 0 

Al’ 
0 

h’ ah' 
T  6 6 6 

Al UA! At* 

z 2 4 
0 0 0 

OAl a2 Ar a A/’ 
- 

2 2 
0 

4 
0 0 

At2 J2 
-a-j-G-Q. 

o At2 a2 At2 
3 3 

0 

1 cl 0 0 q 0 0 0 +hW 

u, + au, = - favhu,, fdh%,, + ... 
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where 4 is the dimensionless wave number, 0 d 4 d 71. The spatial dis~ret~zati~~s 
provided by iinite elements and differences can be compared by confronting th’e 
modified equation (1.6) with the modified equation associated with the standard 
finite difference explicit scheme, namely, 

u, + au, = - $.zvhu,, - gz2( 1 + 23) U,,, + . . . tn.81 

Therefore, using linear finite elements instead of finite differences leaves n~c~a~~e~ 
the temporal part of the truncation error (the terms depending on v) whereas it 
eliminates the contribution to the leading dispersion error due to the spatial 
cretization (the 1 within the brackets in Eq. (1.8)). This very simple and rather 
obvious result is important since it also holds in the case of the three second-order 
accurate time integrators which will be discussed in the following sectisns. 

2. LAX-WENDROW SCHEMES 

In order to eliminate the unconditional instability of the explicit Euler scheme (cf. 
the modified equation (1.8)) Lax and Wendroff have derived a finite difference 
(FD) scheme [ 18 ] by considering the Taylor series expansion in the time step de, 

u ?l+ l= 2.P + At u; + 4(At)2 ldYf + o[(At)3]. (2.1) 

By substituting the advection equation U, = -a~., and u,, = a2uXX, Eq. (2.1) 
becomes 

u X+1 =u~-Atau~+~(At)2a2u”,,+O~(At)3~. 

2.1. Finire Differences 

(2.2) 

When U, and u,, are replaced by standard second-order accurate central ~iffg~erl- 
ces, namely, 

an 

(U,,)j=h~2(62U)j=h~2(U/_1-2Uj+ Uj+l), 

the well-known single-step Lax-Wendroff (LW) scheme is obtained 

u “+‘=-J”-vAou”$$2~2u”, 
2 (2.3 f 

The modified equation for this scheme is reported as the first line of Table II. T 
Warming and Hyett necessary condition for stability is seen to be v2 < 1 and t 
leading terms of the truncation error vanish for v = 1. The examination of t 
amplification factor 

G~~(~,v)=l-v2(1-c~s~)-~vsin~ (2.4) 
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TABLE II 

Modified Equations for the Schemes of Lax-Wendroff Type 

Finite differences 

u, + au, = - iaah2( 1 - v’) u,,, - iah3v( 1 - v’) u,,, - &,ah”( 1 + 5v2 - 6v4) uxx.Xxr + . 

Finite elements 

IA +au = +khzv2u f x 6 xxx - &ah%( 1 - 3~‘) u,,,, + & ah“( 1 - yv’ + 9v“) u,,,, + 

Taylor-Galerkin (finite elements) 

u, + au, = ~ &ah%( 1 - v2) uXXXX + &ah4( 1 - 5v2 + 4v4) u,~~.~.~ + 

makes the picture of the scheme complete: the condition v* < 1 is also suflicient for 
stability and, since Gr$(& v = 1) = e-“, the scheme satisfies the unit CFL con- 
dition. The relative phase error d/4”” = d/( - vt ) = arg( G)/( - vi”) and the modulus 
IGI of the amplification factor of the Lax-Wendroff finite difference scheme are 
plotted in the polar diagrams of Fig. 2.1 for several values of v. As is well known, 
the scheme has a predominantly lagging phase error except for large wavenumbers 
when v > 1. The scheme is dissipative especially at small wavelengths and for v - 4. 
The dissipative character of the scheme leads sometimes to the interpretation of the 
second-order derivative appearing in Eq. (2.2) as an implicit numerical diffusion or 
viscosity inherent to the LaxxWendroff method. It must be stressed, however, that, 
as far as time-dependent solutions are concerned, such an interpretation is 
erroneous since the second derivative term is only an element of the improved dif- 
ference approximation to the time derivative with respect to the explicit Euler 
algorithm. Rather, the correction term is introduced by the Taylor series to 
counterbalance in the transient the negative diffusion intrinsic to the explicit Euler- 
stepping which makes such a scheme unstable for the advection equation. From this 
viewpoint, the use of the Taylor series (2.1) in the Lax-Wendroff method appears 
as a means of stabilizing an explicit time integrator and therefore it can be exploited 
in conjunction with any method of spatial discretization. 

2.2. Finite Elements 

If the piecewise linear representation (1.2) is assumed for the unknown u(x), the 
Lax-Wendroff finite element scheme (LWFE), 

[l +$P](Un+l -U”)= -vA,U”++v*6*Un, (2.5) 

is obtained and the amplification factor assumes the form 

GkF(c, v) = 1 - (2v2 sin2 i< + iv sin t)/( 1 - 5 sin2 it). (2.6) 
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FIG. 2.1. Relative phase error dLw/deX (left) and amplification factor modulus /CL”/ (right) of the 
Lax-Wendroff schemes. (x) v = 0.2, (0) v = 0.5, and (V) v = 0.9. 

The modified equation of this finite element scheme is shown in Table H 
parison with the original finite difference scheme. The spatial discretization is seen 
not to contribute to the (leading) dispersion error. On the other hand, using a 
linear interpolation affects the dissipation error and reduces the domain of 
numerical stability (v’ < 4) with respect to the finite difference scheme. y examin- 

rves of the relative phase error plotted in Fig. 2.1, one sees that the 
r phase accuracy of finite elements over finite differences is adequateiy 

exploited only for small dt (cf. Fig. l), whereas the phase error becomes positive 
and increases at intermediate and short wavelengths as v* + $. Thus, the sim 
juxtaposition of the Lax-Wendroff time differencing and the piecewise linear fi 
element spatial approximation provides a scheme which can attain neither the unn 
CFL property nor the optimal stability limit v* d 1 typical of explicit finite 
ference schemes. 
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2.3. Taylor-Galerkin 

The second modified equation in Table II indicates that the leading truncation 
error in the finite element scheme can be eliminated simply by going a step further 
in the Taylor series expansion (2.1), i.e., by including the third-order term as [lo], 

u “+‘=u”+Atu~+~(At)2U~t+~(At)3U~t,+O[(At)4]. (2.7) 

Then, the third-order derivative term is approximated in a mixed spatial-temporal 
form u,,, = (u,,), = (a2u,,), = a2utXX, so that Eq. (2.7) becomes 

u n+l = un - Atau”, + i(At)2a2u;, + t(At)3a2u~x, + O[(At)“]. (2.8) 

It is important to note that the presence of a third-order spatial derivative would 
prevent the use of finite elements with C,, continuity for the spatial discretization, 
whereas the adopted mixed form leads to a simple modification of the usual con- 
sistent mass matrix. In fact, by substituting u: = (zP+l- zP)/dt+ O(dt) into 
Eq. (2.8), a third-order accurate generalization of the Lax-Wendroff time differenc- 
ing is obtained 

[1-&(At)2a2d~](u”+‘- u”)/At = - au; + 5 Ata2u;,. (2.9) 

The spatial discretization of Eq. (2.9) by means of the weak Galerkin formulation 
and using linear finite elements provides the implicit scheme [lo], 

[l+~(l-v’)s’](u~+l- i-Y)= -vA,U”+~v2~*Un. (2.10) 

The finite element scheme (2.10) based on the Taylor series including the third- 
order term will be called Lax-Wendroff Taylor-Galerkin (LWTG) to distinguish it 
from the second-order finite element scheme (2.5). (In Ref. [lo] the scheme (2.10) 
was named Euler-Taylor-Galerkin to stress its derivation from the Euler time-step- 
ping algorithm.) The only difference between the two finite element schemes is in 
the implicit operator in the term on the left-hand side of Eqs. (2.5) and (2.10). The 
third-order accuracy is obtained by a simple modification of the consistent mass 
matrix, the system of equations (2.10) remaining tridiagonal. The scheme being 
compact, no particular difficulty is met in the treatment of boundary conditions. 
Furthermore, the generalized consistent mass matrix is still symmetric. The 
modified equation corresponding to the scheme (2.10) is given in the last line of 
Table II. By comparing it with the lower-order finite element scheme, one notes that 
the leading dispersion error due to the time discretization has gone from the third- 
to the fifth-order derivative thanks to the higher time accuracy. Thus, going from 
finite differences to Taylor-Galerkin finite elements, one improves the phase 
accuracy because the use of finite elements and the inclusion of an additional term 
in the Taylor series eliminate the leading dispersion errors resulting from the spatial 
and temporal discretizations, respectively. The leading term of the dissipation error 
provides the necessary condition for numerical stability: v* < 1. Moreover, the 
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lowest order term of both dispersion and dissipation errors for the Lax- 
Taylor-Galerkin scheme are found to be zero for v2 = 1. These results are confirmed 
by examining the amplification factor of this scheme 

G),W((, v) = 1 - (2v2 sin* i< + iv sin [)/( 1 - $( I - v’) sin2 it) (2.11) 

which gives the sufficient stability condition v2 < 1 and shows that G+g(4, v) = e ~ It 
for ‘v = 1. Thus, the optimal stability limit and the unit CFL property are attained 
by the Taylor-Galerkin scheme. Furthermore, since @~/~“” = 1 also for v = 4, the 
method has no phase error at all wavelengths for two distinct values of the Courant 
number but no dissipation error only for v = 1. The relative phase error an 
modulus of the amplification factor of the LWTG scheme are shown in Fig. 2.1 
which gives a complete picture of its superior phase accuracy with respect to the 
finite difference method. The phase error of the Taylor-Galerkin scheme is negative 
for v < 5 and positive for v > + at all wavelengths and the maximum dis~~~a~~n 
occurs for v = t when the phase of the scheme is exact. 

It can be noted that the LWTG scheme can also be interpreted as a 
Petrov-Galerkin-like method. In fact, the standard Galerkin weak form of Eq. (2.9) 
provides, after integrating by parts the second-order derivatives and omitting the 
boundary terms for simplicity, 

( [4j+i(At)2~2di a,], (~‘+‘-~“))/dt= - ($,, a~~), (2.12) 

,where 

cjj=qbj++At adq5j/dx (2.12’) 

is a modified weighting function. An advantage of the present Taylor-Galer 
(TG) approach over Petrov-Galerkin methods [X, 9] and [19-221 is that it does 
not involve any adjustable parameter to maximize the accuracy. Examination of 
Eqs. (2.12) shows that the weighting of the time-dependent term is different from 
that of the steady-state part of the equation: in other words, the present approach 
provides weak equations which are not in the consistent form typical of the 
Petrov-Galerkin methods wherein the spatial discretization precedes the time dis- 
cretization [19-221. In fact, the weighting of the transient term is fundame~tall:y 
different in the two approaches. In the TG method the modified weighting 
results from, and is dictated by, the analysis of the truncation error of the time- 
stepping algorithm for the transient equation. On the contrary, in consistent 
Petrov-Galerkin methods for advectiondiffusion or hyperbolic problems a 
modified weighting function is first formulated for the steady-state equation 

) 211 or for the time-continuous evolution equation [22] and only s~bse~~e~tl~ 
applied to all terms of the time-dependent equation or to a time discretized Vera 

sion of the latter. 
n the other hand, the present approach has a stronger relat 
ov-Galerkin methods of characteristic type as developed by 

ip witk 
on and 



474 DONEA, QUARTAPELLE, AND SELMIN 

Parrott [S] and the characteristic Galerkin method of Morton [9]. In fact, these 
methods are derived starting directly from time-discretized versions of the hyper- 
bolic equations so that different weighting functions are derived for each time 
integration algorithm. In particular, the LWTG scheme (2.10) or (2.12) is found to 
be identical to the Euler-Petrov-Galerkin (EPGII) scheme [S] when the latter is 
operated at the optimal value of its adjustable parameter. Furthermore, the TG 
scheme provides a convenient approximation to the more general characteristic 
Galerkin method (see [9]). Galerkin methods of characteristic type thus allow the 
interpretation of the LWTG scheme as a third-order characteristic method much in 
the same manner as the Leith scheme (see [2, pp. 75-771) gives the interpretation 
of the Lax-Wendroff finite difference scheme as a characteristic method of second 
order accuracy for time-dependent solutions. In fact, at two successive time levels, 
the solutions denoted by u”(x) and un+’ (x) satisfy the characteristic relation 

Un+l(X)=Un(X-u At), 

which through a Taylor expansion yields 

u n+1=.n-.~tu~+~(adt)2U~,-~(a~t)3U~,,+O[(dt)4]. 

In view of the governing equation U, = - au,, this relation is clearly equivalent to 
Eq. (2.7), showing that the TG method is indeed a characteristic finite element 
method. 

To illustrate and compare the performances of the three Lax-Wendroff schemes 
discussed so far, consider the advection problem over the spatial interval [0, 11 and 
defined by the initial and boundary conditions 

i 
i{i +cos[7c(x-xxg)/~]} 

4x,0)= o 
if Ix-x01 do 
if Ix-xx01 >a 

(2.13) 
u(0, t) = 0, t30, 

with x,, = 0.2 and 0 = 0.12. The exact solution of Eq. (0.1) with a = 1 corresponds to 
the translation to the right of the initial profile with a unit velocity. Figure 2.2 com- 
pares the numerical solutions obtained using a uniform mesh of 50 elements and 
different values of v with the exact solution at t = 0.6. Both schemes using finite 
elements display a greater phase accuracy than the finite difference scheme. 
However, the most simple LWFE scheme cannot be operated when v2 > f and dis- 
plays an appreciable phase lead for v 2 + (cf. the relative phase error in Fig. 2.1). 
The phase accuracy of the LWTG scheme is on the contrary rather uniform over 
the entire interval 0 < v < 1. One can note that the maximum of the numerical 
solution for v = 4 is slightly smaller than the exact value, in accordance with the fact 
that the amplitude error is a maximum for v = 1 (cf. the amplification factor of 
LWTG in Fig. 2.1). 
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FIG. 2.2. Propagation of a cosine profile. Comparison of the Lax-Wendroff schemes for several 
values of the Courant number. 

To be fair, it should be noted that the improved accuracy of the schemes based 
on finite elements with respect to the finite difference method has been obta~~e 
the expense of making the schemes implicit: the solution of a system of Binear 
equations is required at each time level. However, this is not a major di 
insofar as approximate factorization techniques can be used with converge within 
the requested accuracy in a few iterations (see, e.g., [14]). Nevertheless, the fact 
remains that the finite elements introduce an implicitness into the equations while 
the scheme is only conditionally stable. Therefore, the LWTG scheme can provide 
very accurate solutions of truly transient problems but is to be considered as not 
particularly suited to compute steady-state solutions of stiff problems. 

2.4. Systems of Equations 

The LWTG scheme can also be used to solve systems of hyperbolic equations. To 
give a direct idea of such an extension, consider the linear wave equation 

*,, =a2+xxs a = constant. (2.14) 

With the introduction of the auxiliary variables v = $, and w  = - a$,, on cm 
solve it as a system of two first-order hyperbolic equations 

vt= -aw X’ 
w,= -au X’ (2.15) 
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System (2.15) is rewritten in vector form as 

where 

u,= -aAu XT 

Zl= and A= O l i 1 10’ 

(2.16) 

(2.17) 

The vector equivalent of the LWTG scheme (2.10) is easily found to be 

[Z+ $,(Z- v2A2) S2]( U”+’ - lY’)= -VA A,Un+~v2A2S2Un, (2.18) 

where Z is the 2 x 2 identity matrix and U = (V, W) = (( Vi}, { Wj>). Note that, by 
virtue of (2.17) for the particular system (2.15), A2 = I. Therefore, the correction 
term proportional to v2 in Eq. (2.18) does not couple the two unknowns v and w, 
and the solution of Eq. (2.18) requires two inversions of the same tridiagonal 
matrix. In more general cases, the matrix A2 is not diagonal and a 2 x 2 block 
tridiagonal matrix must be inverted. In Figs. 2.3 and 2.4 the numerical solutions for 

FD 

TG 

v  = 0.2 v  = 0.9 

FIG. 2.3. Propagation of a compression wave in an elastic rod. Comparison of the velocity profiles 
computed by means of Lax-Wendroff schemes. 
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FD 

v  = 0.2 

FIG. 2.4. Pressure pulse propagating in an elastic rod after one reflection at the free ecd. Com- 
parison of the pressure profiles computed by means of Lax-Wendroff schemes. 

two test problems calculated using the LWTG scheme (Eq. (2.18)) and the L 
scheme (Eq. (2.18) with the implicit part dropped) are shown and compared to the 
exact solutions. The first test problem is the propagation of a discontinuous com- 
pression wave (for details see [ 131). The results in Fig. 2.3 clearly confirm t 
excellent phase characteristics of the Taylor-Galerkin scheme with respect 
finite difference scheme. The second test problem is the reflection of a trap 
pressure pulse which propagates in a rod clamped at its end [ 131. The re 
pressure pulse calculated by the two schemes is shown in Fig. 2.4. Her 
numerical results are found to be in conformity with the phase a 
characteristics off the schemes. It should be emphasized that the TG scheme 
provides these good results without the complication associated with the decom- 
position into characteristic fields, which is present in many other ~urn~ri~a~ 
methods. For a Taylor-Galerkin scheme formulated directly for the second-or 
hyperbolic equation (2.14) see Ref. [13]. 

The two LW schemes using finite elements can also be extended to deal with 
nonlinear systems of hyperbolic equations. This is illustrated in Fig. 2.5 which 
shows the solutions extracted from [12] of a Riemann problem for a perfect gas- 
-the well-known Sod shock-tube problem. The calculations have been p~rf~r~~~ 

581 70.2-14 
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FIG. 2.5. Numerical solutions to the Sod shock-tube problem obtained by means of nonlinear 
Lax-Wendroff schemes. Comparison of (a) two-step finite difference scheme (v = 0.9), (b) second-order 
finite element scheme (v = 0.45), and (c) third-order Taylor-Galerkin scheme (v = 0.9). 
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FIG. 2.5-Continued. 

on a uniform mesh using a time step corresponding to a CFL condition number of 
0.9 for the explicit, two-step, LaxxWendroff finite difference scheme an 
TaylorGalerkin scheme, whereas a CFL number of 0.45 was employed 
second-order finite element scheme. No explicit artificial viscosity has been 
the calculations but a direct Galerkin approximation to the fluxes h 
employed in compression regions (for details see Cl4 ] ). The compariso 

5 shows the superiority of the finite element sch 
y a better overall accuracy, a much reduced amp& 

physical oscillations and a sharper representation of the disco~ti~~~t~es. 

3. LEAP-FROG SCHEMES 

As shown in [lo], a generalized leap-frog time-stepping algorithm can be derived 
in the form 

Cl ~ @t)2a2~~](uH+1 -u”- ‘)/2 At = -au;. (3.1) 

On a uniform mesh of linear elements the specific form of the ~ea~~fro~ 
Taylor-Galerkin scheme (LFTG) is 

II1+~(1-v’)s’](Un+i-Un~1)= -2vd,V. (3.2)l 



480 DONEA, QUARTAPELLE, AND SELMIN 

TABLE III 

Modified Equations for the Schemes of Leap-Frog Type 

Finite differences 

u, + au, = - @h2( 1 - v2) u,,, + &7h4( 1 - lOv2 + 9v4) u,,,, + . 

Finite elements 

u i-au =lah2v2u I X6 xxx + . 

Taylor-Galerkin (finite elements) 

u, + au, = &zh4(2 + 5~’ - 7~“) u,, + . . 

This scheme is fourth-order accurate and its stability condition reads v2 < 1, while 
the standard LFFE scheme has the reduced stability limit v* < f. Scheme (3.2) was 
obtained by Morton and Parrott [S], using a Petrov-Galerkin approach of charac- 
teristic type and choosing the optimal value of the adjustable parameter therein 
available. 

The modified equation associated with Eq. (3.2) is shown in Table III together 
with those corresponding to the finite difference leap-frog scheme [23, 243 and the 
standard LFFE scheme. The improved phase accuracy of the TG scheme is clearly 
apparent from the fact that the leading truncation error is now in terms of a lifth- 
order spatial derivative, in contrast to the third derivative appearing in the classical 
schemes. This is confirmed by the polar diagrams of the relative phase error in 
Fig. 3.1. It is important to note that both the finite difference scheme and the 

FD 

FE TG 

Fig. 3.1. Relative phase error dLF/p of the leap-frog schemes (x) v = 0.2, (0 ) v = 0.5, (V) v = 0.9. 
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FIG. 3.2. Propagation of a cosine profile. Comparison of leap-frog schemes for several values of the 
Courant number. 

Taylor-Galerkin scheme satisfy the unit CFL property only within a limited range 
of wavelengths. In fact it can be shown that dLF/dex = 1 at v = 1 only for 0 < (: < z/2, 
whereas hLF/dex < 1 for n/2 < 5 d rr (see also [4, p. 601, for the finite difference 
case). Therefore, these leap-frog schemes operated with v = 1 provide the exact 
solution only for signals with wavelength ,? = 27-c/(c/h) = 2xh/4 such that 4h < /1< w  
whereas the short wavelengths in the range 2h < i < 4h propagate with a wrong 

eed. This result is a direct consequence of the three-level character of the leap-frog 
time differencing. The numerical behaviour of the three leap-frog schemes is 
illustrated in Fig. 3.2 which shows the solutions of the test problem (2.13) for dif- 
ferent values of v. 

4. CRANK-NICOLSON SCHEMES 

A similar analysis can be performed in the case of the Crank-Nicolson (CN) 
time-stepping algorithm. Considering forward and backward Taylor series expan- 
sions extended up to the fourth-order term [IO], a generalization of the 
Crank-Nicolson algorithm is obtained in the so-called incremental (delta) form 
c251, 

[l +fAtaiY,+~(At)2a2d~](u”f1-u”)/6t= -au;. (4.1) 
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The spatial approximation of Eq. (4.1) by means of linear finite elements gives the 
CNTG scheme 

[1+~(1+$+?*+;V‘40](U~+i-Un)= -vd,U”. (4.2) 

The CNTG scheme (4.2) is nondissipative as opposed to the third-order 
Crank-Nicolson Petrov-Galerkin scheme developed in [S]. Scheme (4.2) has also 
been obtained by Harten and Tal-Ezer by combining the fourth-order time dis- 
cretization (4.1) with a fourth-order accurate Pad6 approximation of the spatial 
derivative [26,27]. The same scheme has also been considered in [28] as a par- 
ticular case of Pade schemes with maximum order of accuracy. 

The modified equations of the standard Crank-Nicolson schemes and of its TG 
version are reported in Table IV. Since the coefficients of the leading error terms of 
the finite difference scheme are always positive, the unit CFL property cannot be 
attained when the standard Crank-Nicolson time discretization is combined with a 
second-order spatial approximation. The same applies to the simple finite element 
version of the scheme which is characterized by a lagging phase error due to the 
time discretization only. Note that this finite element scheme is equivalent to the 
scheme previously derived by Beam and Warming using a compact implicit 
approximation to the spatial derivative [25]. 

The relative phase errors of the CrankkNicolson schemes are compared in 
Fig. 4.1 which shows that the phase response of both the finite difference and the 
standard finite element schemes deteriorates as v increases, whereas excellent phase 
speed and the unit CFL property at all wavelengths are obtained by the CNTG 
scheme. Therefore, in order to attain the unit CFL property in a nondissipative 
two-level scheme, the fourth-order spatial accuracy must be combined with a high- 
order time discretization belonging to the class of the canonical schemes devised for 
Hamiltonian systems [29]. The uniformity of the numerical performances of the 
CNTG scheme is further illustrated in Fig. 4.2 which compares the solutions to the 
problem (2.13) calculated by means of the three Crank-Nicolson schemes. 

Note that for periodic boundary conditions the CNTG scheme, although uncon- 
ditionally stable, cannot be operated for v2 3 1 since the governing matrix in 

TABLE IV 

Modified Equations for the Schemes of Crank-Nicolson Type 

Finite differences 

Finite elements 

u fau = -lah*v% i x 12 xx + ” 

Taylor-Galerkin (finite elements) 

24, + au, = &@h4(4 - 59 + v4) u,,,, + 
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FIG. 4.1. Relative phase error qbCN/qSex of the Crank-Nicolson schemes. ( x ) v = 0.2, ( 0 ) v = 0.5: (C 1 
v = 0.9. 
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FIG. 4.2. Propagation of a cosine profile. Comparison of Crank-Nicolson schemes f~or several values 
of the Courant number. 
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Eq. (4.2) becomes singular, as shown by the detailed analysis of Harten and Tal- 
Ezer [27]. Furthermore, we have found oscillatory results for v2 > 1 even in the 
case of the test problem (2.13) where nonperiodic boundary conditions are 
prescribed. This indicates that the CNTG scheme cannot be used safely for values 
of the Courant number exceeding unity. 

5. TWO-DIMENSIONAL EQUATIONS 

This section extends the previous analysis to the case of two-dimensional 
equations in order to see to what extent the properties of the Taylor-Galerkin 
schemes in one dimension are still valid in the multidimensional case. This question 
has a certain interest considering the intrinsically multidimensional structure of 
finite element approximations as opposed to the direct product character of stan- 
dard finite difference approximations to the spatial derivatives. The purely spatial 
discretization of the advection equation in two dimensions by finite differences and 
elements is first examined. Then, the fully discretized equations obtained using the 
Lax-Wendroff, leap-frog, and Crank-Nicolson time-stepping algorithms are con- 
sidered. The domains of numerical stability for the two-dimensional schemes are 
determined. Some numerical comparisons between the finite difference and 
Taylor-Galerkin schemes are provided in the case of the Lax-Wendroff time-step- 
ping. Furthermore, the effectiveness of the weak formulation in the treatment of 
outflow boundaries is illustrated by a simple two-dimensional example. Finally, the 
multidimensional wave equation will be examined to show the structure of the 
Lax-Wendroff Taylor-Galerkin scheme when the mathematical problem is for- 
mulated as a system of first-order hyperbolic equations. 

5.1. Spatial Semi-discretizations 

Consider the advection equation in two dimensions 

u,+a-Vu=O, (5.1) 

where a = (a,, ay) is a constant velocity vector and V = (a/ax, a/@). If one assumes 
an initial condition of the form u(x, 0) = z4,,eiP’Y, where p = (p,, p,) is the (dimen- 
sional) wavenumber vector, the exact solution to Eq. (5.1) is u(x, t) = UOei(p’x+or), 
where the exact frequency or phase velocity o is defined simply by 

o(p, a)= -asp. (5.2) 

A uniform rectangular mesh with sizes h, and h, in the two directions is introduced 
to discretize Eq. (5.1) spatially. Using standard second-order central differences, the 
semi-discrete version of Eq. (5.1), 
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is then obtained, where U= U(t) = { Ui,Jt), j, k = . . . . - 1, 0: 1, 2 ,... > is the vector of 
mesh-point values, 4: = (c, d) = (a,/h,, a,//~,) and A = (d,, dY) (the spatial difference 
operators d, and A, are defined in the Appendix). The phase velocity orb 
associated with the semi-discrete finite difference equations (5.3) is found to be 

CD&&, c) = - c sin 5 - 6t sin q9 (5.4) 

where 5 = (l, ;r) = (k,p,, hYpy) is the dimensionless wave vector. To evaluate the 
properties of the spatial discretization in the two-dimensional case, the velocity vec- 
tor a is first expressed as a = Ial (cos a, sin c:) where a is the advection direction, 
and the numerical phase velocity of waves propagating in this direction is then 
analyzed by considering 5 = 151 ( cos a, sin CL). The ratio of the semi-discrete to the 
exact phase velocity is therefore given by the expression 

which depends only on IsI and CC, r FD = rFD( 151, 01), in the case of a square mesh, 
h, = h, = h. As a consequence, the phase response displays a ependence on the 
wavelength L = 27c/lpl = 27ch/l4 as well as on the direction a propagation with 
respect to the mesh (anisotropy of the spatial discretization). 

The use of a spatial semi-discretization by means of bilinear finite e 
modifies the finite difference equations (5.3) in two respects: 

(i) a more isotropic discretization of the operator 6 is afforded, which is 
given by 

s = (d ,̂, L$) = $(A, + + A, + 1 Ay.x, A, t + A., - $ A,,); 

(ii) the consistent mass matrix 

(5.6) 

is introduced to multiply the time derivative of the vector of nodal values U(t), the 
first- and second-order operators A and d2 being defined in the Appendix. 

The semi-discrete equations obtained by finite elements are therefore written as 

Considering the Fourier transform of operators (56) and (U), one fin& 

c * A(&) = @[sin < + $ sin(r + ye) + 4 sin (r - q)] 

+ @[sin y + a sinft + q) - $ sin(c - y)] 

=~c(l+~cos~)sin~+~d(t+~cos~)sin~, 
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M(5) = 1 - $(sin* +t + sin* &yl) - $(sin* I(( + q) + sin2 $(S -q)) 

=l-fC$(l-cos5)+$(1-cos~)+~(1-cos~cos~)] 

=~(1+~cos~)[1-~(1-cos~)] 

=$(1+4cos[)[l-f(l-cosrj)]. 
c 

It follows that the phase velocity mFE associated 
element equations (5.8) has the form 

with the semi-discrete finite 

cl+&, c)=$g= c sin 5 dsiny 
l-(1/3)(1-cos~)+1-(1/3)(1-cos~) (5.9) 

which explicitly shows that the phase response of the one-dimensional semi-dis- 
cretization is reproduced in the two-dimensional case for an advection velocity 
parallel to the mesh lines. In Fig. 5.1 the phase accuracy responses of different 
spatial discretizations are compared graphically by means of a polar representation 
(in the first quadrant) of the phase velocity ratio r = r( 151, a), for different values of 
the wavelength A = 2rch/j51, as done in [4]. The finite difference discretization (5.5) 
is accurate only at long wavelengths and relatively anisotropic at small 
wavelengths. The use of finite elements for the representation of the advection 

FD FE(DM) 

FE 

FIG. 5.1. Phase response of the semi-discrete approximations to the advection equation in two 
dimensions. Polar representation of the relative phase error for signals of a given wavelength, 
propagating in all directions. Comparison of spatial discretizations by central finite differences (upper 
left) and by bilinear finite elements with diagonalized mass matrix (upper right) and consistent mass 
matrix (lower). The quoted numbers indicate the value of the dimensionless wavelength l/h. 
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. 5.6) combined with a diagonalized mass matrix reduces the anisotropy of e 
approximation even at small wavelengths without improving the propagation 
velocity of signals with long and intermediate wavelength. On the contrary, a finite 
element discretization including the consistent mass matrix (5.7) provides a very 
accurate and isotropic phase velocity except only for very short wavelengths. 

5.2. Lax- Wendrojjf Schemes 

To obtain fully discrete schemes of the Lax-Wendroff type for Eq. (5.1), the time 
discretization has to be analyzed before the process of spatial discretizati 
means of the Taylor series (2.1), it is straightforward to obtain the multi 
sional version of the Lax-Wendroff time-stepping algorithm in the form 

cu 
n+l -zf)/At= -a.Vu”+SAta~V(a.Qu”). (5.10) 

Therefore, in the multidimensional case, the stabilization of the Euler scheme is 
achieved by a second-order correction term which possess a tensorial cbaractes an,d 
acts only in the direction of the velocity and not transversely (streamline correc- 
tion). When combined with standard finite differences, the algorithm gives the 
classical single-step Lax-Wendroff scheme in two dimensions [ 181, 

AU”+‘/At= -c~AU”+fAt(c2~;+2cdA,A,+d26;) U’, (5.11,) 

where Aunt’= U”+‘- U” and U” = ( UJ’,). By introducing the Courant number 
vector v = (v, p) = E At = (a, At/h,, a,v At/h,), the LWF scheme is written in the 
form 

Au”+‘= - v * AU” + +(v’ Sf + 24~ A,A, + p2 S;) CJ”. 

The amphfkation factor of the scheme (5.12) is 

Ckg(&, v) = 1 - [iv sin 5 + v’( 1 - cos [)] - VP sin 5 sin q 

-[il*si~~~+~~(l-cosr)]. (5.13) 

The domain of numerical stability in the plane (v, ,r~) of the finite difference scheme 
(5.13) is obtained from the condition 16;:(5, v)i < 1 for all SE [O, R] x [O, n] and 
is shown in Fig. 5.2. The reduced stability domain of the two-dimensional scheme 
with respect to that in one dimension is clearly seen. The largest time ste 
stability is found to be equal to that provided by the well-known condition Ivj = 
la/ At/h d l/3 [30]. Note that another Lax-Wendroff scheme far the two-~~rn~~~ 
sional equation has also been considered by successively applying the o~e~d~rne~- 
sional Lax-Wendroff scheme (2.3) in the two Cartesian directions, to give 
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0 0.57 I 

FIG. 5.2. Domains of numerical stability of the Lax-Wendroff schemes for the two-dimensional 
advection equation. 

This direct-product scheme is, however, unstable and has led to the rediscovery of 
scheme (5.11) as the proper stabilization of the explicit Euler time-stepping in the 
two-dimensional case (tensor viscosity method) [ 3 11. 

The use of bilinear finite elements with the time discretized equation (5.10) gives 
the LWFE scheme in two dimensions 

MAU”+‘= - v - &J” + $(v’ 8: + 2vp A,A, + p2 8.;) U”, (5.14) 

with the difference operators 2 and $ given in the Appendix. It differs from the FD 
scheme (5.i2) by the presence of the consistent mass matrix M and by a more 
isotropic representation of both the operator V and the second-order operator 
a. V(a * V). To obtain the TG version of the LaxxWendroff scheme, Eq. (5.10) has 
to be replaced by 

[l - 4(At)2 a. V(a . V)](u”” - zP)/At = -a * Vu” + + At a * V(a * Vu”). (5.15) 

After the spatial discretization using bilinear elements, Eq. (5.15) becomes 

M,AU”+‘= -v*b’+ $(v’8;+2vp A,A,+p2 $;) U”, (5.16) 

where the generalized mass matrix M, is defined by 

M, = M - $( v2 $z -I- 2vp A, A, + ,u2 8;). (5.17) 

Note that the corrective term in M, has the same tensorial structure as the second- 
order correction term in Eq. (5.14). The amplification factor of the two-dimensional 
LWTG scheme is 

G,w(S> v) = 1 - M,‘(G, v)C&,, v)- f~(5, v)l, (5.18) 
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where 

q5, v) = Aal) - @wi, VI, (518a) 
A(& v) = $iv(l + $ cos q) sin 5 + +ip(l -t 1 cos 5) sin q, (5.18b) 

K(&, v) = $v’( 1 + + co5 q)( 1 - cos 5) + 2vp sin 5 sin q 

+~/3(1+~COS~)(1-cOSY]). (5.18c) 

The stability domains of the FE and TG Lax-Wendroff schemes in two~dirn~~siQr~s 
are shown in Fig. 5.2. As in the one-dimensional case, the simplistic FE scheme 
a stability domain smaller than that of the FD method whereas the T@ scheme has 
the same stability range as the FD method. The exact coincidence of the two curves 
was not recognized by the authors in [ 111 due to a lack of spatial resolution in the 
5 plane. 

The phase properties of the three schemes are compared in Fig. 5.3 which 

FE 

FIG. 5.3. Phase velocity error of the Lax-Wendrofi schemes for the advection equation in two 
dimensions. 
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provides a polar representation of the phase velocity error of the fully discrete 
equations defined as 

(5.19) 

The two values (VI = 0.2 and Iv/ = 0.3 have been considered. The response of both 
FD and TG schemes improves as Iv1 increases. The superior phase accuracy of the 
finite element spatial discretization is seen to hold irrespectively of the direction of 
propagation of the waves. 

To compare the two-dimensional Lax-Wendroff schemes considered so far, the 
advection of a product-cosine hill in a pure rotation velocity field is considered. The 
initial condition is 

%(X1 = 
{ 

$[1+cos9Tx][1+cos7cY] if X2+Y2<1 
0 if X2+ Y*>l, 

where X = (x - x0)/c, x0 and 0 being the initial position of the centre and the radius 
of the cosine hill. The advection field is a pure rotation with unit angular velocity, 
namely a(x) = (- y, x), so that a nonconstant coefficient linear equation is solved 
for which Eq. (5.15) is still valid provided a is interpreted as a = a(x). 

For the treatment of the boundary conditions, it is necessary to split r in the two 
parts ri, and r,,, (see Fig. 5.4) defined by 

n-alrim<O and n - a/ =,,, 3 0. (5.20) 

In this case, the value of the unknown u is prescribed along r,, whereas no boun- 
dary condition is prescribed on rout [ 321. Correspondingly, the weighting functions 
w  are chosen to satisfy the homogeneous boundary condition on r,,, WI r,, 
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by parts (Green-Gauss theorem), one has to retain the surface integrals over TooI 
as 

(w, Au”+’ )/At+iAt((V-(wa),a-VAu”+’ *a a+uP%rj 

= -(w,a*Vu”)-iAt (V*(wa),a*Vu”)-j wn-aa*Vu”dTj, (5.21) 
f-O”1 

where in general a = a(x). 
A uniform mesh of 30 x 30 quadrilateral elements over the unit square [ - $,4] x 

[ - &, =j] has been employed in the calculations. The numerical solutions for the case 
x0 = (8, i), G = 0.2 are shown in Fig. 5.5 after a complete revolution for two time- 
step values, At = 24200 and At = 274120. To compare the accuracy of the various 

a b 

FIG. 5.5. Advection of a cosine hill in a pure rotation velocity field. Comparison of the numerical 
solutions after a complete revolution calculated by means of the LW schemes with At = 27r/200. (a) F%), 

= 0.852, U,,, = -0.167, err =0.246, (b) FE(DM), U,,, 
~~E, u 

= 0.818, Urnin = - 0.177, err = 3.328, 
max = 0.987, Umin = - 0.016, err = 0.0020, (d) TG, U,,, = 0.988. U,,, = - 0.022, err = 0.0016. 

With dt=27(/120, (e) FD, U,,,= 0.826, Urnin = -0.162, err =0.262, (f) I%. U,,, =0.978, Urnin = 
- 0.020, err = 0.0020. 
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schemes, the maximum and minimum values of the computed solutions are 
provided together with the corresponding L2-error defined by err = 11 U - uIj/IIuII, 
where llu112 =cj [U(Xj)]‘. The greater accuracy of the schemes with the consistent 
or generalized mass matrix is clearly seen. Admittedly, they are computationally 
more expensive than the explicit FD scheme because at each time step the solution 
of a banded (symmetric) linear system is required. The inversion of the mass matrix 
can, however, be approximated by a purely explicit iterative technique which takes 
a particularly simple form due to the incremental character of the equations [13]. 
In the case of linear equations, two iterations are found to be sufficient to preserve 
the phase accuracy at all the relevant wavelengths. For nonlinear problems, three 
iterations are to be used, particularly in the case of the TG scheme where a different 
generalized mass matrix is generated at each time step. 

In the above problem the initial condition is such that the rotating hill does not 
reach the boundary so that the numerical results are insensitive to the boundary 
conditions actually used. To assess the influence on the solution accuracy of 
properly accounting for the surface integrals on outflow boundaries, a second test 
case has been undertaken using x0= (0.3,0.3) and 0=0.2 so that the cosine hill 
“interacts” with the boundary. The solutions provided by the LWTG scheme with 
At = 27c/200 at different times are shown in Fig. 5.6. The numerical errors are found 
to be approximately twice those in the previous example where the hill always 
remains inside the computational domain. This indicates that the variationally 
generated surface integrals in Eq. (5.21) ensure a very low level of spurious reflec- 
tions at outflow boundaries. 

5.3. Leap-Frog Schemes 

By generalizing the second- and fourth-order accurate leap-frog algorithms to the 
multidimensional case, it is straightforward to obtain the LFFD and LFTG 
schemes for the advection equation (5.1), in the forms 

and 

u n+l-un-l= -Zv.AU” (5.22) 

M*(Un+l- lJ”-‘)= -2p&, (5.23) 

FIG. 5.6. Advection of a cosine hill in the presence of inflow and outflow boundaries. Numerical 
solution at different times calculated by means of LWTG scheme with AZ = 24200. After one complete 
revolution U,,, =0.953, Urnin = -0.024, err =0.00359. 
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where 6 and M, are defined by Eqs. (5.6) and (5.17), respectively. The LF 
scheme is obtained from the LFTG scheme by simply replacing the generali 
mass matrix AI, with the consistent mass matrix M. 

The stability analysis of the two-dimensional leap-frog schemes ds to the 
domains of numerical stability in the plane (v, p) depicted in Fig. 5.7. 
to the Lax-Wendroff schemes, one notes that the TG scheme is more unstab 
the FD method. On the other hand, by comparing the two TG schemes, th 
frog differencing guarantees a greater stability domain than the Lax-Wen 
descretization. The phase velocity error of the three fully discrete leap-frog s&e 
are shown in Fig. 5.8 by the polar representation diagrams for Iv1 = 0.3 
/v/ = 0.6. One notes the anomalous behaviour of the FE scheme with lagging or 
leading phase errors depending on the wave propagation direction. Such 
disappears in the TG scheme. Furthermore, one observes that in both the 
the TG scheme, as Iv1 tends to the stability Limit, the phase velocity 
propagating parallel to the mesh tends to the exact value only for wavelengths R = 
2nh/l& 3 4h, in conformity with the one-dimensional case. 

5.4. Crank-Nicolson Schemes 

Similarly, from the Crank-Nicolson time-stepping algorithms, the two- 
sional version of the CNFD and CNTG schemes is obtained in the mere 
forms 

[l +$v.A](V+~- CT)= -v.AtJ”, 

[lGg+&4J(u~+~-u~)= -v-‘un, (5.25) 

where 

ag = A4 + &(v’ 6; + 2vp A, A, + /x2 6;). (5.25’) 

0 0.57 I 

FIG. 5.7. Domains of numerical stability of the leap-frog schemes for the two-dimensional advection 
equation. 

581,'70/2-15 
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FIG. 5.8. Polar representation of the phase velocity error of the leap-frog schemes for the advection 
equation in two dimensions. 

Again, the simple FE scheme is obtained from the TG one by replacing a, with M. 
In all cases lGCNl = 1 and the Crank-Nicolson schemes are unconditionally stable. 
In Fig. 5.9 the phase response of the two-dimensional schemes for waves 
propagating in all directions and for the two values Iv1 = 0.3 and Iv1 = 0.9 are 
represented graphically by polar diagrams. Whereas the accuracy of both the FD 
and FE schemes decreases as Iv1 increases, the CNTG scheme tends to reproduce 
the exact phase velocity as Iv1 -+ 1, almost uniformly for all propagation directions 
(nearly isotropic unit CFL property). This behaviour is more clearly illustrated in 
Fig. 5.10 which shows the phase velocity diagrams for some limiting values of Iv1 as 
Iv1 + 1. Note that the singularity of the phase error at Iv1 = 1 discovered by Harten 
and Tal-Ezer in the one-dimensional case [27] is also found in two dimensions, as 
was indeed expected. 

5.5. Wave equation 

In this subsection, the multidimensional wave equation is considered and 
discretized by the Lax-Wendroff scheme just for the purpose of showing how the 
structure of the Lax-Wendroff correction term depends on the vector character as 
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FD 

FE 

TG 

v = 0.9 

FIG. 5.9. Phase velocity error of the Crank-Nicolson schemes for the advection equation in two 
dimensions. 

FIG. 5.10. Phase velocity error of the Crank-Nicolson Taylor-Galerkin scheme. 
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well as on the spatial dimensionality of the system of hyperbolic equations. 
Consider the linear equation governing the propagation of longitudinal waves in 
two dimensions 

*,, = a2 V’*, (5.26) 

where V2 is the two-dimensional Laplacian operator. Since V’+ = V * V$, the 
introduction of the two unknowns u = tit and w  = -a VI) allows the expression of 
Eq. (5.26) as a system of first-order hyperbolic equations 

v,= -aV.w, 

w,= -aVv. 
(5.27) 

By introducing the three-component vector unknown u = (v, w) = (v, wr, w2), 
system (5.27) can be rewritten as 

u,=aV,u, (5.28) 

where the spatial differential operator V, is defined by 

VA v * L I VT 0 . (5.29) 

It is straightforward to derive the third-order Lax-Wendroff time discretization 
(5.15) for system (5.28). By simple calculation one obtains 

[l -i(At)2a2(V,)2(zP+1 -zP)/dt= -aV,u”+&Ata2(V.J2U”, (5.30) 

where the second-order operator (V,)’ is given by 

(V*)“= [;t v(;. )]. (5.31) 

The coupling structure engendered by the operator (V,)’ is made explicit by con- 
sidering the weak form of Eq. (5.30) with a separate representation of the equations 
for the components v and w  of the unknown U. The weak equation for the scalar 
unknown v is 

(z, Avntl )/At+~Ata2(Vz,VAv”t’)= -a(z,V-w”)-$Ata2(Vz,Vv”), 

(5.32) 

whereas that for the vector unknown w  is 

(y, Awn+’ )/At+~Ata2(V.y,V*Awnf’)= -a(y,Vv”)-4Ata2(V-y,V*w”), 
(5.33) 
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where the incremental unknowns Au”+ ’ = v”+ ’ - vn and Awn+ ’ = wn + ’ - 
been introduced. One notes that the second-order and third-order correcti 
leave the scalar unknown decoupled from the vector one, but introduce a ~o~~Ii~~ 
between the two components w1 and w2 of the vector unknown w. 

6. CONCLUSION 

The paper has investigated the causes of the numerical difficulties encountere 
the solution of hyperbolic problems when classical, second-order accurate, time- 
marching methods are coupled to piecewise linear approximations on a fixed mesh. 
An analysis based on the modified equation method has pointed out that the 
proper remedy to overcome the above difficulties consists of extending the Taylor 
series in the time increment to the third order before discretizing spatially by means 
of the conventional Galerkin formulation. This procedure is not common in the 
finite element approach to evolution problems wherein the spatial approximatio 
usually precedes the temporal discretization. 

On the contrary, the reversed order of the two discretizations (time-s 
sidered in the paper leads to highly accurate and compact TaylorGalerkin schemes 
for solving hyperbolic equations, which may be regarded as the proper 
generalization to finite elements of the Lax-Wendroff, ieap-frog, and 
Crank-Nicolson finite difference methods. Surprisingly enough, the 
argument which has led Lax and Wendroff to formulate their celebrated fin 
ference scheme is found to be capable of upgrading all three second-order accurate 
time integrators so as to ensure a proper matching with a unite-element-bases 
spatial approximation. Furthermore, the resulting Taylor-Galerkin schemes appear 
quite naturally in the so-called incremental (delta) form and are characterized by 
the absence of any adjustable parameter. In this latter respect, an important result 
of the present analysis has been the elimination of the need for free or adjustable 
parameters as encountered in Petrov-Galerkin schemes for hyperbolic equations. 
Therefore, the present work appears to complement for transient hyperbolic 
problems the recent work of Ortiz on the steady advectiondiffusion equation 1333 
in which a variational formulation of the advection-diffusion boundary value 
problem was introduced, leading to a parameter-free Petrov-Galerkin method for 
steady problems. 

As far as nonlinear problems are concerned, Cullen and orton 173 have shown 
that the high spatial accuracy of the Galerkin finite element formulation also holds 
for hyperbolic equations with quadratic nonlinearities. It follows that the 
Taylor-Galerkin schemes studied herein can be generalized to deal with problems 
in this class. This possibility has already been investigated in [ 111 where encourag- 
ing results have been obtained. 

Finally, the Taylor-Galerkin methodology discussed in the present paper may 
also find applications in the numerical solution of parabolic equations. his has 
been suggested in [14], where the solution of mixed advectio~~diff~sio~ proMems 
is considered. 
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APPENDIX: SPATIAL DIFFERENCE OPERATORS IN Two DIMENSIONS 

The elementary difference operators used in Section 5 to approximate the spatial 
derivative V = (8/8x, a/dy) by central finite differences and by bilinear finite 
elements are defined as 

(AxWj,k = !duj+ 1,k - uj- 1,k) 

(Ay U)j,k = fcUj,k+ I - uj,k- 1) 

(A,U)j,k=f(Uj+l,k+1-Uj~l,k--I) 

(Ayx u),k = SCuj+ I,k- I - Uj- I,k + I I 

Hereafter, we also list the second-order difference operators used in Section 5 to 
represent the differential operator a * V(a * V) in two dimensions by finite differences 
and to represent the consistent mass matrix and the operator a * V(a * V) by bilinear 
finite elements 

csf u)j,k = uj+ I,k - 2uj,k + uj- l,k 

(d;u)j,k= Uj,k+l-2Uj,k+ uj,k-1 
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